NS 102 Lecture 9

NS 102 Lecture 9

The Cosmological Distance Scale

 $\frac{D}{200,000 \text{ AU}} = \frac{56}{p}$

seconds parallax

pc = seconds
pc parallax

$$\frac{D}{pc} = \frac{seconds}{parallax}$$

star	parallax ('')	distance (pc)
α Centauri	0.75	1.3
Barnard's star	0.5	2.0
Sirius	0.4	2.5
Altair	0.2	5.0

They have different apparent brightness
They have different colors
They move
They change in brightness

Intensity: energy per time per area

$$I = \frac{Energy}{Time Area}$$

 I_0 = threshold of hearing

$$dB = 10 \log (I/I_0)$$

Intensity: energy per time per area

$$I = \frac{Energy}{Time Area}$$

Energy Time (Power) measured in watts

Area

measured in cm²

Intensity in watts per cm²

Inverse-square law

Intensity: energy per time per area

$$I = \frac{\text{Energy}}{\text{Time Area}} \qquad I = \frac{\text{power}}{\text{cm}^2}$$

Power property of source

Intensity depends on power and distance between source and detector (R)

Intensity = $\frac{power}{4\pi R^2}$

Let there be light

For light!!!

$$I = \frac{Energy}{Time Area}$$

Energy (Luminosity)

measured in watts

Area

measured in cm²

Intensity in watts per cm²

Inverse-square law

For light!!!

$$I = \frac{luminosity}{cm^2}$$

Luminosity property of source

Intensity depends on power and distance between source and detector (R)

Intensity =
$$\frac{\text{luminosity}}{4\pi R^2}$$

LET THERE BE LIGHT!

Greeks classified stars into 6 classes, or <u>magnitudes</u>

Brightest stars were 1st magnitude Dimmest stars were 6th magnitude

Intensity of brightest stars = $100 \times dimmest$.

For sound:
$$\frac{dB_1}{dB_2} - \frac{dB_2}{dB_2} = \alpha \log(I_1/I_2)$$

$$\alpha$$
, dB₀, and I_0

At threshold of hearing:
$$dB_0 = 0$$
 and $I = I_0$

$$dB = \alpha \log(I/I_0)$$

At threshold of pain:
$$dB = 120$$
 and $I = 10^{12} I_0$

$$120 = \alpha \log(10^{12})$$

$$dB = 10 \log(I/I_0)$$

For sound:
$$dB_1 - dB_2 = 10 \log(I_1/I_2)$$

$$m_1 - m_2 = \alpha \log(I_1/I_2)$$

$$1 - 6 = \alpha \log(10^2)$$

$$-5/2 = \alpha$$

$$\alpha = -2.5$$

$$|m_1 - m_2| = -2.5 \log(I_1/I_2)$$

"-" means smaller m is brighter!

For light:

$$m_1 - m_2 = -2.5 \log(I_1/I_2)$$

Need to define the scale:

$$I_{\odot} = 0.137 \text{ watts cm}^{-2}$$
 $m_{\odot} = -26.8$

For source of intensity I, the magnitude is

$$-26.8 - m = -2.5 \log(0.137 \text{ watts cm}^{-2}/I)$$

"-" means smaller *m* is brighter!

Some Magnitudes

m = -26.8

Venus
$$m = -4$$

Sirius
$$m = -1.5$$

Naked eye limit
$$m = 6$$

Intensity of sun vs. naked eye limit

Sun

$$m_{\rm S} = -26.8$$

Naked eye limit

$$m_N = 6$$

$$m_S - m_N = -2.5 \log(I_S/I_N)$$

$$-27-6=-2.5 \log(I_{S}/I_{N})$$

$$433 = 4\frac{5}{2} \log(|s|/|N|)$$

$$33 \times \frac{2}{5} = 13 = \log(I_S/I_N)$$

$$10^{13} = I_{\rm S}/I_{\rm N}$$

Intensity of Venus vs. Pluto

Venus

$$\mathbf{m}_{\mathbb{Q}} = -4$$

Pluto

$$m_{p} = 15$$

$$m_{\uparrow}-m_{P} = -2.5 \log(l_{\uparrow}/l_{P})$$

$$-4-15=-2.5 \log(I_{\text{p}}/I_{\text{p}})$$

$$\frac{19}{19} = \frac{5}{2} \log(|l_{\text{p}}/l_{\text{P}})$$

19 X
$$\frac{2}{5}$$
 = 8 = $\log(I_{\gamma}/I_{P})$

$$10^8 = I_{\odot}/I_{P}$$

Intensity of Venus vs. Sirius

Venus
$$m_{\updownarrow} = -4$$

Sirius $m_s = -1.5$

$$m_{\gamma} - m_{s} = -2.5 \log(l_{\gamma}/l_{s})$$

$$-4 - (-1.5) = -2.5 \log(I_{\circ}/I_{s})$$

$$\angle 2.5 = \angle 2.5 \log(|_{2}/|_{s})$$

$$1 = \log(I_{\mathcal{Q}}/I_{\mathcal{S}})$$

$$10^1 = 10 = I_{\text{p}}/I_{\text{s}}$$

The luminosity of nearby stars?

Measure: intensity of light, I

parallax → distance

$$I = \frac{L}{4\pi R^2}$$

 $I = \frac{L}{4\pi R^2}$

$$-26.8 - m = -2.5 \log(0.137 \text{ watts cm}^{-2}/I)$$

Measured

star	parallax ('')	distance (pc)	apparent magnitude	luminosity (solar)
α Centauri	0.75	1.3	0	1.5
Barnard's star	0.5	2.0	9.5	0.0005
Sirius	0.4	2.5	-1.5	25
Altair	0.2	5.0	8.0	10
Canopus	0.003	330	- 0.7	200,000
Arcturus	0.1	10	O	90
Betelgeuse	0.01	100	0.5	14,000

Intensity of Sun vs. Sirius

Sun
$$m_S = -26.8$$

Sirius $m_I = -1.5$

$$m_S - m_I = -2.5 \log(I_S/I_I)$$

$$10^{10} = I_{s}/I_{l}$$

We know the distance to Sirius via parallax

Parallax = 0.4 second

Our Sun ain't the brightest bulb in the box!

Intensity =
$$\frac{Luminosity}{4\pi R^2}$$

$$L_{SIRIUS} = 25 \times L_{SUN}$$

For stars we know distance to via parallax:

Measure Distance (R) → Know Luminosity
Measure Intensity

They have different apparent brightness They have different colors They move They change in brightness

COLORS OF THE RAINBOW:

ROY-G-BIV

Schematic Hertzsprung-Russell Diagram

